Spring Plungers • with internal hexagon

EH 22060.

Product Description

Spring plungers can be used for locating or for applying pressure, as a detent or for ejection.

Material

Pin

- · Free cutting steel, hardened, blackened
- · Thermoplastic POM, white
- Stainless Steel 1.4305, nitrided

Body

- Free cutting steel, blackened
- · Stainless steel 1.4305

Spring

· stainless steel

Assembly

Spring plungers can be mounted and removed by means of the slot or internal hexagon. Please use a special assembly tool for mounting with a slot (pin side).

Characteristic

Standard spring load: no marking Reinforced spring load: marked with two lines

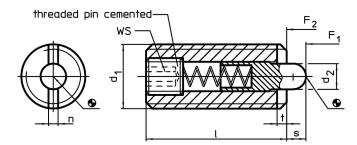
Standard spring load

Heavy spring load

More information

Notes

Special types on request. Spring plungers are specially tested for spring range and forces.


References

Thread lock on request, please refer to appendix - Technical Data -

Further products

Spring Plungers, with internal hexagon and seal

Drawing

Erwin Halder KG

Order information

Dimensions					ws	Stroke	Spring load ¹⁾				Ĭ	Art. No.
d ₁	d ₂	I	n	t		S	F ₁	F ₂	min.	max.		
[mm]				[mm]	[mm]	[N]		[°C]		[g]		
free cutting steel, standard spring load												
М 3	1.0	12	0.4	0.5	0.7	1.0	2.0	4	_	250	0.4	22060.0003
M 4	1.5	15	0.6	0.6	1.3	1.5	4.5	16	-	250	0.9	22060.0004
M 5	2.4	18	1.2	0.8	1.5	2.3	6.0	19	_	250	1.7	22060.0005
M 6	2.7	20	1.3	0.9	2.0	2.5	6.0	19	_	250	2.8	22060.0006
M 8	3.5	22	1.5	1.4	2.5	3.0	10.0	39	_	250	5.7	22060.0008
M10	4.0	22	1.5	1.4	3.0	3.0	10.0	39	_	250	9.2	22060.0010
M12	6.0	28	2.7	2.0	4.0	4.0	12.0	53	_	250	16.0	22060.0012
M16	7.5	32	3.2	2.5	5.0	5.0	45.0	100	_	250	35.0	22060.0016
M20	10.0	40	3.7	3.0	6.0	7.0	52.0	125	_	250	67.0	22060.0020
M24	12.0	52	3.7	3.0	8.0	10.0	70.0	170	_	250	129.0	22060.0024

¹⁾ statistical average value

www.halder.com Page 1 of 3
Published on: 23.5.2023